Tentamen Analyse 2013

Date : 04-11-2013 14.00 - 17.00 Time : Place Aletta Jacobshal 02 :

Provide clear arguments for all your answers; 'yes' or 'no' answers are not allowed. In your argumentation you may use all theorems and statements in the book. However, you should indicate which theorems/ statements you are using.

The detailed grading scheme can be found below.

- 1. Let $f:(0,1)\to\mathbb{R}$ be differentiable, with $|f'(x)|\leq M$ for all $x\in(0,1)$ for some positive constant M.
 - (a) Let the sequence $(x_n), x_n > 0$, be such that $(x_n) \to 0$. Prove that $\lim_{n\to\infty} f(x_n)$ exists. **Hint:** Show that $(f(x_n))$ is a Cauchy sequence.

- (b) Conclude that $\lim_{x\to 0^+} f(x)$ exists.
- (a) Let $f:[0,\infty)\to\mathbb{R}$ be continuous. Prove (by using theorem(s) from the book) that 2.for every c > 0 the restricted function $f : [0, c] \to \mathbb{R}$ is uniformly continuous.
 - (b) Formulate the Sequential Criterion for Nonuniform Continuity of a function f: $[0,\infty) \to \mathbb{R}.$
 - (c) Prove by use of the Sequential Criterion for Nonuniform Continuity that the continuous function $f: [0,\infty) \to \mathbb{R}$ defined as $f(x) = x^2$ is not uniformly continuous. **Hint:** Consider the sequences $(x_n), (y_n)$ defined as $x_n = n, y_n = n + \frac{1}{n}$.
 - (d) Let $f:[0,\infty)\to\mathbb{R}$ be continuous and such that $\lim_{x\to\infty}f(x)$ exists. Prove that fis uniformly continuous on $[0, \infty)$.
- 3. Consider a continuous function $f: [0,1] \to \mathbb{R}$ with $0 \le f(x) \le 1$ for all $x \in [0,1]$.
 - (a) Prove that there exists at least one $x \in [0, 1]$ with $f(x) = x^2$. **Hint:** Consider the function $f(x) - x^2$.
 - (b) Suppose additionally that f is differentiable on (0,1) and that f(0) = 0, f(1) = 1. Show that there exists an $x \in (0, 1)$ such that f'(x) = 2x.

4. Consider the infinite series

$$\sum_{n=0}^{\infty} (-1)^n x^n (1-x), \quad x \in [0,1]$$

(a) Show by computation that this series converges pointwise on [0, 1] to the function $s(x) = \frac{1-x}{1+x}$. (**Hint**: Recall that the *n*-th partial sum s_n of the geometric series $\sum_{n=0}^{\infty} r^n$ is given by $s_n = \frac{1-r^n}{1-r}$.)

- (b) Show that the convergence of the series to the function s is uniform on any interval $[0, \delta]$ with $0 < \delta < 1$.
- (c) Show that the convergence of the series to the function s is uniform on the whole interval [0, 1].
- (d) Compute the pointwise limit of the series of absolute values for any $x \in [0, 1]$. Is this convergence also uniform on [0, 1]? Explain your answer.
- 5. Consider two Riemann integrable functions $f, g : [a, b] \to \mathbb{R}$, satisfying $f(x) \le g(x)$ for all $x \in [a, b]$. It is well-known that this implies that $\int_a^b f \le \int_a^b g$. Give a direct proof of this fact which is solely based on the definition of the Riemann integral.

Grading scheme:

Total 100, Free 10.

- 1. a: 8, b: 4.
- 2. a: 5, b: 4, c: 8, d: 8.
- 3. a: 8, b: 8.
- 4. a: 5, b: 8, c: 7, d: 7.
- 5. 10.