Tentamen Analyse 2013

Date : 04-11-2013
Time : 14.00-17.00
Place : Aletta Jacobshal 02
Provide clear arguments for all your answers; 'yes' or 'no' answers are not allowed. In your argumentation you may use all theorems and statements in the book. However, you should indicate which theorems/ statements you are using.

The detailed grading scheme can be found below.

1. Let $f:(0,1) \rightarrow \mathbb{R}$ be differentiable, with $\left|f^{\prime}(x)\right| \leq M$ for all $x \in(0,1)$ for some positive constant M.
(a) Let the sequence $\left(x_{n}\right), x_{n}>0$, be such that $\left(x_{n}\right) \rightarrow 0$. Prove that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)$ exists.
Hint: Show that $\left(f\left(x_{n}\right)\right)$ is a Cauchy sequence.
(b) Conclude that $\lim _{x \rightarrow 0^{+}} f(x)$ exists.
2. (a) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be continuous. Prove (by using theorem(s) from the book) that for every $c>0$ the restricted function $f:[0, c] \rightarrow \mathbb{R}$ is uniformly continuous.
(b) Formulate the Sequential Criterion for Nonuniform Continuity of a function f : $[0, \infty) \rightarrow \mathbb{R}$.
(c) Prove by use of the Sequential Criterion for Nonuniform Continuity that the continuous function $f:[0, \infty) \rightarrow \mathbb{R}$ defined as $f(x)=x^{2}$ is not uniformly continuous. Hint: Consider the sequences $\left(x_{n}\right),\left(y_{n}\right)$ defined as $x_{n}=n, y_{n}=n+\frac{1}{n}$.
(d) Let $f:[0, \infty) \rightarrow \mathbb{R}$ be continuous and such that $\lim _{x \rightarrow \infty} f(x)$ exists. Prove that f is uniformly continuous on $[0, \infty)$.
3. Consider a continuous function $f:[0,1] \rightarrow \mathbb{R}$ with $0 \leq f(x) \leq 1$ for all $x \in[0,1]$.
(a) Prove that there exists at least one $x \in[0,1]$ with $f(x)=x^{2}$.

Hint: Consider the function $f(x)-x^{2}$.
(b) Suppose additionally that f is differentiable on $(0,1)$ and that $f(0)=0, f(1)=1$. Show that there exists an $x \in(0,1)$ such that $f^{\prime}(x)=2 x$.
4. Consider the infinite series
$\sum_{n=0}^{\infty}(-1)^{n} x^{n}(1-x), \quad x \in[0,1]$
(a) Show by computation that this series converges pointwise on $[0,1]$ to the function $s(x)=\frac{1-x}{1+x}$.
(Hint: Recall that the n-th partial sum s_{n} of the geometric series $\sum_{n=0}^{\infty} r^{n}$ is given by $s_{n}=\frac{1-r^{n}}{1-r}$.)
(b) Show that the convergence of the series to the function s is uniform on any interval $[0, \delta]$ with $0<\delta<1$.
(c) Show that the convergence of the series to the function s is uniform on the whole interval $[0,1]$.
(d) Compute the pointwise limit of the series of absolute values for any $x \in[0,1]$. Is this convergence also uniform on $[0,1]$? Explain your answer.
5. Consider two Riemann integrable functions $f, g:[a, b] \rightarrow \mathbb{R}$, satisfying $f(x) \leq g(x)$ for all $x \in[a, b]$. It is well-known that this implies that $\int_{a}^{b} f \leq \int_{a}^{b} g$.
Give a direct proof of this fact which is solely based on the definition of the Riemann integral.

Grading scheme:

Total 100, Free 10.

1. $\mathrm{a}: 8, \mathrm{~b}: 4$.
2. a: $5, \mathrm{~b}: 4, \mathrm{c}: 8, \mathrm{~d}: 8$.
3. a: $8, \mathrm{~b}: 8$.
4. a: $5, \mathrm{~b}: 8, \mathrm{c}: 7, \mathrm{~d}: 7$.
5. 10 .
